Japan’s Ultimate Interceptor: N1K2-J Shiden-Kai in 1:72

The Japanese Navy’s desire for a floatplane fighter follow-on to the interim Zero-based A6M2-N led to the Kawanishi N1K1 Kyofu, a compact floatplane with laminar-flow wings, which first flew in may, 1942. Only 97 Kyofus were produced before the need for the floatplane fighter evaporated as Japan was forced onto a defensive footing. 

Kawanishi was thinking ahead, however: as early as December 1941, the company began work on a land-based version of the plane, resulting in the N1K2-J Shiden. This fighter boasted a 2000hp Homare engine that produced a top speed of 363mph, four 20mm cannon (and two 7.7mm in some models), better armor for the pilot than earlier fighters, and self-sealing tanks. Because it inherited the mid-wing arrangement of the Kyofu, the landing gear was quite tall; this led to frequent gear failures and collapses. 

To counter that, Kawanishi engineers re-designed the aircraft as a low-wing aircraft, resulting in the N1K2-J Shiden-Kai. The wings were largely the same, but the fuselage was totally redesigned; top speed climbed to 369mph, and serviceability was far better in spite of the often-balky Homare engine. It also inherited its automatic combat flaps from its predecessors; these extended the flaps automatically during turns to reduce turning radius without subjecting the pilot to excessive G’s, forcing the pilot to use a heavy force on the control column, or causing the fighter to stall. The first N1K2-J was delivered in April 1944, but B-29 raids led to shortages of engines and equipment that limited production to about 425 aircraft. 

In combat, the N1K2-J was a handful for American pilots. While it was never a major threat to the B-29s – its rate of climb rarely put it in position to intercept – it was an effective weapon against U.S. Navy aircraft. Because it needed an experienced pilot to get the most from it, the IJN allowed Capt. Minoru Genda to form a Kokutai (group) of experienced flyers. The group, the 343rd Kokutai (replacing an earlier incarnation of the 343rd wiped out in defense of Guam and Palau), had for hikotai (squadrons), did what it could against an overwhelming tide of U.S. Navy aircraft, B-29s and, eventually, P-51s and P-47s, claiming over 170 enemy planes. In return, 82 pilots of the 343rd Kokutai were killed in action, 14 were wounded and 20 more died in flying accidents. 

One of the fliers to fall in combat was Chief Petty Officer Shoichi Sugita. Born in Niigata Prefecture in 1924, he earned his wings at age 19 and was pressed into combat immediately. On his first mission, flying from Rabaul, he intercepted and shot down a B-17, but his plane was badly damaged and he crash-landed his burning Zero. On April 18, 1943, he was part of the escort for the G4M1 carrying Admiral Isoroku Yamamoto, and his failure to protect his charges caused him to suffer a mental breakdown that kept him from combat for a number of weeks. The gradual deaths of his squadron members forced him back into the air, but he was seriously burned in August and returned to Japan for treatment, followed by a brief period as an instructor. He requested a return to combat, and he amassed an impressive score over the next year, fighting over Guam, the Marianas and the Philippines. When 34-victory ace Thomas McGuire was killed when he stalled trying to help his wingman, Sugita was the pilot who was his intended target. Officially, Sugita was credited with 63 (including 30 shared) victories by the time he was selected for the 343rd Kokutai in late 1944. 

CPO Shoichi Sugita

Sugita scored seven more victories with the N1K2-J, including a mission on April 12, 1945, when he claimed two Hellcats and a Corsair after returning in a badly shot-up Shiden-kai. But Sugita’s luck did not hold. Three days later, the 301st Hikotai received late warning of an American raid on their new base at Kanoya. Genda ordered an immediate scramble, and just as the first N1K2-Js lifted off, 28 Hellcats flying from USS Independence and USS Randolph arrived over the base. As Sugita made his takeoff run, eight Hellcats closed in on him. The CO of VF-46, LCDR Robert “Doc” Weatherup, caught Sugita at about 400 feet and opened fire. Sugita’s aircraft abruptly banked and crashed at the end of the runway, killing him instantly. Genda apologized to his Hikotai leader, Lt. Naoshi Kanno, who was crushed by Sugita’s loss. Sugita was not flying his assigned aircraft at the time; that plane passed to Lt. Masaji Matsumura and, eventually, to Kanno. Following the practice of applying victories to the plane that scored them rather than the pilot, the plane eventually had 16 victory markings. 

Back in 1994, Aoshima put out a 1:72 kit of the N1K2-J (and the N1K1-J, and the Ta 152) that had a reputational hill to climb. The company’s earlier 1:72 kits were truly terrible models that bore only a passing resemblance to the subjects they depicted. But the new models were on a par with Academy kits – not overly complicated, but accurate in outline, with recessed panel lines and rivet detail and very clear canopies. I had long-term plans to build an N1K2-J, and I amassed some aftermarket parts for it over time. When I was challenged to build a model start to finish in 45 days, the Shiden-kai was a perfect choice. 

The cockpit gained my attention first. I have a copy of Robert Mikesh’s Japanese Aircraft Interiors 1940-1945, which has a nice section on the N1K2-J (four still exist today). Any angles that weren’t visible in that book were covered in the Famous Airplanes of the World issue on the Kyofu/Shiden family. Armed with good references, I started by sanding the rear bulkhead so I could open up the blocked-off framework there. The N1K2-J had four oxygen bottles that mounted in holes in this framework; to replicate them, I sanded .040 styrene rod to a rounded end, then cut it off, drilled the top with a No. 80 drill to accept wiring later, and cemented the four resulting half-cylinders into place on the rear bulkhead. A couple of small details were added to the bulkhead, followed by “hoses” made from fine wire that were CA-glued into the predrilled holes and then worked down the bottom of the bulkhead. When it was time for painting, the tanks and hoses were painted black, with brass “valves” at the top. 

The oxygen bottles in place on the aft bulkhead.

Kora does an interior set for this model, but most of the resin in it is crude. I was able to salvage the seat, and I drilled out all the lightening holes in it. I also used the forward bulkhead, which has the prominent gunsight mount, although the gunsight itself looked nothing like the Type 4 Model 1 sight in the real plane. This was made from some styrene rod, metal rod, a photoetched bezel and a strip styrene bit as a “crash pad.” 

The sidewalls of the cockpit were sanded flat and I re-built the consoles to better match the real items. Aoshima’s interior parts fit into the completed fuselage from the bottom, so I was able to add some details – map case, switchboxes, fuel pump controls, and the main throttle – to the fuselage sides. The lower mixture control on the left side console was made with halved sections of 1/16-inch styrene rod, topped with wire rods for the control levers. These were then given bulb “handles” with tiny bits of white glue. The trim tab was a cut-down photoetched part, and bits of styrene and lead wire were employed as various switch boxes and pull handles. 

The mixture controls and trim tab wheel on the right side were scratch-built. The rudder pedals are installed in this image – upside down! That was caught before painting.

The right side consoles were cleaned up, and the two large instruments were represented with Reheat photoetched bezels. The radio shelf and radio were similarly scratchbuilt with styrene rod and strip. 

I took care to get the various visible wiring runs in place, using .2mm lead wire. The rudder pedals were removed, to be replaced by the Kora photoetched examples. The rudder bar mechanism was dressed up with some wire and rod to simulate the complex mechanism in the real plane. I also used Kora’s photoetched instrument panel and its paper instruments; the manifold pressure gauge in the real aircraft is red on its right side, so I colored the appropriate part of the instrument with a .005 red pen, then airbrushed the instrument panel black and drybrushed it with ocean gray. The instruments were cut out and adhered to the photoetched panel with Future, giving them a glossy “lens” look. I also added the center three instruments from another photoetched panel to make up for the three that Kora inexplicably left off. This assembly was then CA-glued to the front bulkhead from the kit. 

he instrument panel, in place and painted

The instrument panel in the real plane was installed in such a way that the back of the panel was visible through the windscreen. I carefully glued short slices of .035 and .040 to the back of the panel behind the instrument faces, then drilled holes in them with a No. 80 bit. Each instrument received a wire that was run down the side of the panel, then the back of the panel was painted flat black and dry-brushed with ocean gray. 

The wired back of the control panel, fashioned from styrene rod and .2mm wire.

Kora’s seat was painted and weathered with a bit of aluminum dry-brushing. At this point, I lost the seat – after an exhaustive search, I found it inside one of my closed references, with the prominent handle on its left side broken! The handle was replaced with a little styrene rod and metal tubing. The photoetched belts were bent to shape, painted and installed. 

I painted the rest of the cockpit, using a dark green as the base color, and assembled the rear bulkhead, floor, seat and instrument as a unit. The control column from the kit was painted to match references and added to the cockpit assembly. I joined the fuselage halves, cleaned up the minimal seams and re-scribed a few panel lines, and then slipped the cockpit assembly into place. The front bulkhead with the gunsight mount took a little test-fitting and sanding to fit cleanly, but once in place it looked great. 

The installed cockpit, with the gunsight and its mount prominently on display.

Before the wings went on. I drilled out the exhaust stacks, which are molded to the fuselage sides. There are six stacks per side, so I took care to get things centered before I drilled, starting with a No. 80 and moving to progressively larger bits.

The exhaust stacks after the first pass. Subsequent passes cleaned up the stacks.

I added the lower wing, which needed a .005 styrene shim along the trailing edge seam with the fuselage. The upper wings went on cleanly, with minimal filling at the wing roots and along the leading edge. I re-scribed the wing with a UMM scriber and restored the nice rivet detail with a sharpened tack. 

Fit sas generally good, but note the shim at the wing/fuselage joint.

The position lights were carved out of the wingtip using a motor tool and cutoff wheel, followed by small files. I drilled a hole into a bit of clear styrene, then pushed some clear red and green paint into the holes. The backs of the clear styrene were painted aluminum, and then I CA-glued the clear parts into the notches in the wingtips. I sanded the clear styrene back to mirror the original contours of the wingtips and polished the plastic to clarity. I did the same with the prominent formation light at the base of the rudder; this had a clear bulb, so I merely drilled the hole and left it un-colored. 

The position light in the tail. Clear bulbs are easy – just drill the hole and leave it uncolored!

The horizontal stabilizers went on with little drama – first, I added them with a little CA glue, then I checked their alignment against the wing. Next came some sanding, followed by some additional filler to fully eliminate the seam, some more sanding and a bit of re-scribing. 

I dressed up the kit engine by painting it black and drybrushing aluminum, then adding a collector ring from .5mm lead wire, followed by 18 push rod tubes, each cut from a length of black stretched sprue. I painted a length of .2mm lead wire a tan color and used it to make the ignition wires. The front of the crankcase from the kit was painted gray and given a wash of 50-50 water and Pledge Future Shine with some black acrylic paint in it. All this detail was likely to be invisible behind the propeller spinner, but anyone peeking inside the cowling will get at least a glimpse.

The dressed-up kit engine is smaller in diameter than a penny! Wire and stretched sprue did the job nicely.

Speaking of the propeller, I carefully cut it from the sprue (the attachment points were on the trailing edges of two blades) and cleaned all the flash off with a flexible file. Then, I had to fill sink marks on the back of each blade – a bit of a throwback to Aoshima’s past! 

Ouch! Sink marks!

The tips were painted white, followed by yellow, then a thin stripe on the front side of each blade was masked off and the propellers were painted ModelMaster German Schockoladenbraun, a neat match to the primer color Japanese propellers were painted. The cuffs at the propeller’s base were hand-painted aluminum; these are visible when the propeller is mounted in the spinner, so special care was required. 

The prop, looking a little nicer.

During the build, I discovered that Master Model did machined barrels for the Type 99 Mk. I 20mm cannons. I ordered them, and then had to consider how to keep to my 45-day schedule while waiting for the barrels to arrive. I didn’t want to paint the yellow leading edges and then potentially mar them by drilling one of the holes for the cannons off-center. Instead, I clipped off the kit’s cannons and drilled pilot holes in the kit fairings. Doing this would allow me to enlarge the holes when the barrels arrived with minimal risk to the paint.

Pre-drilling the guns with small bits enables me to enlarge them later for the brass barrels.

The wheel wells in the kit have adequate detail, but I added some missing structural elements, some wiring and a few details that would enhance the look of the landing gear. 

A little detail goes a long way – especially since there’s not much in the wheel wells to begin with!

That seems like a good place for a break! Next time, we get the clear parts in place and begin painting and weathering!